Fractional quantum mechanics
In physics, fractional quantum mechanics is a generalization of standard quantum mechanics. The term fractional quantum mechanics was coined by Nick Laskin[1]. Standard quantum mechanics can be approached in three different ways: the matrix mechanics, the Schrödinger equation and the Feynman path integral.
The Feynman path integral[2] is the path integral over Brownian-like quantum-mechanical paths. Fractional quantum mechanics has been discovered by Nick Laskin (1999) as a result of expanding the Feynman path integral, from the Brownian-like to the Lévy-like quantum mechanical paths. A path integral over the Lévy-like quantum-mechanical paths results in a generalization of quantum mechanics[3]. If the Feynman path integral leads to the well known Schrödinger equation, then the path integral over Lévy trajectories leads to the fractional Schrödinger equation[4]. The Lévy process is characterized by the Lévy index α, 0 < α ≤ 2. At the special case when α = 2 the Lévy process becomes the process of Brownian motion. The fractional Schrödinger equation includes a space derivative of fractional order α instead of the second order (α = 2) space derivative in the standard Schrödinger equation. Thus, the fractional Schrödinger equation is a fractional differential equation in accordance with modern terminology[5]. This is the main point of the term fractional Schrödinger equation or a more general term fractional quantum mechanics. As mentioned above, at α = 2 the Lévy motion becomes Brownian motion. Thus, fractional quantum mechanics includes standard quantum mechanics as a particular case at α = 2. The quantum-mechanical path integral over the Lévy paths at α = 2 becomes the well-known Feynman path integral and the fractional Schrödinger equation becomes the well known Schrödinger equation.
See also
References
- ^ N. Laskin, (2000), Fractional Quantum Mechanics and Lévy Path Integrals. Physics Letters 268A, 298-304.
- ^ R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals ~McGraw-Hill, New York, 1965
- ^ N. Laskin, (2000), Fractional Quantum Mechanics, Physical Review E62, 3135-3145. (also available online: http://arxiv.org/abs/0811.1769)
- ^ N. Laskin, (2002), Fractional Schrödinger equation, Physical Review E66, 056108 [7 pages]. (also available online: http://arxiv.org/abs/quant-ph/0206098)
- ^ S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications ~Gordon and Breach, Amsterdam, 1993
Further reading
- L.P.G. do Amaral, E.C. Marino, Canonical quantization of theories containing fractional powers of the d’Alembertian operator. J. Phys. A Math. Gen. 25 (1992) 5183-5261
- Xing-Fei He, Fractional dimensionality and fractional derivative spectra of interband optical transitions. Phys. Rev. B, 42 (1990) 11751-11756.
- A. Iomin, Fractional-time quantum dynamics. Phys. Rev. E 80, (2009) 022103.
- A. Matos-Abiague, Deformation of quantum mechanics in fractional-dimensional space. J. Phys. A: Math. Gen. 34 (2001) 11059–11068.
- N. Laskin, Fractals and quantum mechanics. Chaos 10(2000) 780-790
- M. Naber, Time fractional Schrodinger equation. J. Math. Phys. 45 (2004) 3339-3352. arXiv:math-ph/0410028
- V.E. Tarasov, Fractional Heisenberg equation. Phys. Lett. A 372 (2008) 2984-2988.
- V.E. Tarasov, Weyl quantization of fractional derivatives. J. Math. Phys. 49 (2008) 102112.
- S. Wang, M. Xu, Generalized fractional Schrödinger equation with space-time fractional derivatives J. Math. Phys. 48 (2007) 043502
- E Capelas de Oliveira and Jayme Vaz Jr, "Tunneling in Fractional Quantum Mechanics" Journal of Physics A Volume 44 (2011) 185303.